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Abstract: Geographers and social scientists have probed the effects of agglomeration and spatial 
clustering on innovation and economic growth.  Economists and others have identified the role of 
knowledge spillovers in driving the innovation process.  While innovation is thus assumed to be a 
function of proximity, there has been little systematic research on the role of density in innovation.  
Thus, this research investigates density, and more specifically the density of creative workers, as a 
key factor influencing regional innovation.  It uses principal components analysis to create and 
implement a composite measure of density and presents a model of innovation as a function of 
creative-density.  Statistical analyses including multivariate regression finds that density and creativity 
separately and jointly affect innovation in metropolitan areas.  The regression analysis finds a 
positive relationship between the density of creative workers and metropolitan patenting activity.  
This suggests that density is a key component of knowledge spillovers and a key component of 
innovation. 
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I. Introduction 

Geographers and social scientists have long been interested in the effects of proximity and 

agglomeration on innovation and economic growth.  Ever since Alfred Marshall, geographers have 

examined the economic consequences of dense linkages in industrial and economic agglomerations.  

These geographic agglomerations create external economies of scale through the sharing of 

technology and managerial expertise, thus increasing the productivity of inputs.   For the past two 

decades, economic geographers have been especially interested in the rise of specialized innovation 

districts in the innovation process.  The transfer of skills and qualifications and the enhanced 

capacity for the acquisition of tacit knowledge by the small to medium sized firms in these districts 

promotes innovation and innovation diffusion (Asheim 2000).  Saxenian (1994) identifies Silicon 

Valley as a model industrial district, with high rates of growth and innovation flowing from its dense 

geographic networks of technology firms. 

More recently, geographers and economists have focused on the role of knowledge spillovers in 

powering innovation.  This view argues that there is a geographic boundary to the learning and 

transfer of knowledge between individuals and firms that precedes innovation. 

 

Building upon this past work, geographers now place innovation and knowledge creation in an 

increasingly spatial context.  Feldman and Florida (1994) suggest that “innovation is increasingly 

dependent on a geographically defined [technological] infrastructure”.  Bunnell and Coe (2001) 

explore ‘spaces of innovation’, suggesting linkages and interrelationships across spatial scales.  

Bathelt, Malmberg, and Maskell (2004, 40) conclude that innovation and new knowledge is best 

understood as a combination of local and global interactions.  Sonn and Storper (2003) find that 

inventors cite local patents increasingly over time.  More recently, density has become a topic of 

increasing interest to scholars studying the geographic factors that influence regional innovation and 

growth (Ciccone and Hall 1996; Sedgely and Elmslie 2004; Strumsky, Lobo and Fleming 2005; 
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Andersson, Quigley, and Wilhelmsson; Carlino, Chaterjee, and Hunt 2001, 2006).  This work finds 

relationships between local or national employment density and labor productivity or patenting 

activity. 

 

Innovation is a much studied topic in its own right.  In her seminal book The Economy of Cities, 

Jane Jacobs (1969, 49) connects innovation and growth when she claims that “Innovating 

economies expand and develop.  Economies that do not add new kinds of goods and services, but 

continue only to repeat old work, do not expand much nor do they, by definition develop”.  Jacobs 

also corrects Adam Smith’s view that specialization drives economic growth, arguing instead that 

diversity generates innovation.  Glaeser (2000, 83) views cities as centers of idea creation and 

transmission and figures that “cities will grow when they are producing new ideas or when their role 

as intellectual centers is increasing”.  Romer (1990) and other new growth theorists cite innovation 

as a key factor in economic development.  Finally, Lucas (1988) focuses on the importance for 

innovation of human capital externalities and the clustering of people.  Thus, given the 

correspondence between innovation and sought social outcomes, it remains to identify the causal 

factors that bring about innovation.   

 

This article builds upon this recent attention while also extending the existing literature on the 

determinants of regional innovation in a number of important ways, foremost by focusing on the 

relationship between innovation outcomes and the interaction of highly skilled individuals and 

population density.  In doing so, we expand upon, and in some important ways depart from, the 

inter-related concepts of proximity, knowledge spillovers, and face-to-face interactions of intellectual 

human capital often discussed in recent economic geography literature.  Building upon some of 

these recent articles, in our analyses we employ population density at the metropolitan level.  Yet, we 

extend beyond them by combining our use of population density with the recent research 
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demonstrating the positive effects of human capital on innovation to posit that high densities of 

human capital workers promote innovation.  We estimate a cross-sectional linear regression model 

over 240 geographic metropolitan areas in the U.S.  This analysis examines how “creative-density” – 

the density of the creative class – affects patenting activity.  Using principal component analysis we 

construct a novel composite population density measure, which we then interact with a measure of 

creative-class employment.  When included in a linear regression model alongside other important 

predictors of innovation, this creative-density term is found to positively and significantly relate to 

metropolitan area patenting.  Creativity and the composite density measure also independently relate 

positively to innovation.   

 

We proceed with a concepts and theory section that first examines the existing research that to date 

looks into the geographical determinants of innovation, then briefly suggests how a testable theory 

arises from it, and subsequently examines this hypothesis in greater detail.  We then discuss the data, 

methodologies, results, conclusions, and policy aspects of the findings.   

 

II. Concepts and Theory 

Agglomeration and Innovation:  An almost century-long lineage of scholarship (Marshall 1920; 

Jacobs 1961, 1969; Thompson 1965; Storper 1997; Porter 1998; Scott 2000, 2005) describes the 

existence of agglomeration economies and their role in innovation and economic growth.  Many 

studies have noted the tendency of high-tech industries to cluster.  Others have noted the 

importance of industrial districts to the flow of innovation and to economic growth (Piore and Sabel 

1984).  Saxenian (1994) examines the density of high-technology industry and the production of 

innovation in Silicon Valley and Boston’s Route 128.  Glaeser (2005) points to New York City’s 

historical agglomerations in the garment and publishing industries and the relationship of these 
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clusters to the city’s role as the nation’s premier port.  He also explains that the current-day 

propensity of financial activity in New York stems from the need for quick 

access to idea flows and the most recent information.  Creative industries also cluster.  Caves (2002) 

provides an economic framework for explaining why industries producing intangibles would cluster.  

Currid (2006, 344) illustrates the concentration of artistic and cultural occupations in New York 

City, and suggests that “dense production agglomerations are especially likely to be sites of 

originality and inventiveness.”  Scott (2005, 9) describes how “Hollywood became, and continues to 

be, the largest and most influential cultural-product agglomeration in the world….”  Certainly, these 

different cities underwent variant processes of development, but geographic proximity and density 

were common factors for them all.  In this paper, we build upon this rich scholarly historical 

foundation by exploring how urban density – the density of creative occupations – relates to 

innovation in U.S. metropolitan areas.  The following sections discuss how and why urban creative-

density matters for the innovative processes that power economic development and growth. 

 

Knowledge Spillovers: 

Knowledge spillovers have been noted as a key reason for the spatial clustering of innovative 

industries.  Demonstrating that knowledge can spill across firms at all, especially across firms in 

close technological proximity, means that there is a credible possibility that geographic proximity can 

also mediate these spillovers (Feldman 2000).  A study by Audretsch and Feldman (1996) presents 

key findings in this recent literature which attempts to measure “the geographic impact of 

knowledge spillovers on innovation” (Feldman 2000).  They note that an important result of 

previous research is that the R&D investments of private corporations and universities spill over to 

third parties.  If the ability to receive knowledge spillovers depends on distance from the knowledge 

source, then clustering of knowledge producing inputs (R&D expenditures, human capital, etc) 

should ensue.  It follows that the innovative activity should also cluster, following the clustering of 
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the inputs.  Conversely, if we observed a more evenly spread pattern of innovation, it would imply 

that knowledge spillovers are not geographically mediated.  The authors find that, even after 

controlling for the concentration of production, innovation is still concentrated close to the source 

of the new knowledge. This provides evidence that the spillovers have a geographic limitation.  This 

research reflects and clearly builds upon early work by Feldman and Florida (1994) that found that 

“innovation is increasingly dependent on a geographically defined [technological] infrastructure”.  

Additionally, research by Anselin, Varga, and Acs (2000) found strong evidence of geographically 

mediated spillovers between university research and industrial innovation in the electronics and 

instruments industries.  Glaeser (2000, 103) provides intuition for this effect when he notes that 

“The [externality] kind of [non-market] interaction even more strongly depends on spatial proximity.  

In many cases, these effortless transmissions of ideas and values depend on sight or hearing…. 

Obviously, the ability to see or hear depreciates sharply with space”.  Research in this vein shows 

that geographic proximity of knowledge producing inputs influences the knowledge flows that are 

responsible for innovation.  Yet, attention is given neither to the mechanisms producing the 

spillovers nor to specific conceptions of proximity like density.  We next discuss such mechanisms.  

 

Zucker, Darby, and Brewer (1998) demonstrate how intellectual human capital is a means by which 

geographically mediated spillovers are realized.  They empirically demonstrate how the localization 

of intellectual human capital (embodied in “star” bio-technology scientists) is predictive of the 

localization of new bio-tech start-up firms.  Feldman (2000, 380-1) claims that “[t]his work 

demonstrates that localized intellectual capital is key in the development of the bio-tech industry and 

that knowledge generates externalities that tend to be geographically bounded within the region 

where the scientists reside”.  Thus, whereas the first strain of literature demonstrated that geographic 

proximity is important in that it promotes the spillovers necessary for innovation, this research 

suggests that the skills and knowledge embodied in individuals are the mechanisms by which these 
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spillovers actually occur.  Lucas (1988) and Storper and Venables (2004) take this one step further by 

reasoning that it is the face-to-face interactions between individuals with high human capital that 

facilitates spillovers and the growth of knowledge.  Lucas continues by saying that these interactions 

are so important that people are willing to pay extremely high land rents in order to be close to other 

people, and thus to benefit in terms of learned knowledge and increased productivity.  Pinch and 

Henry (1999) and Almeida and Kogut (1999) both illustrate one particular manifestation of these 

mechanisms.  For two separate industries (the British motor sport industry and the semiconductor 

industry, respectively), these two papers show that knowledge and ideas are circulated within 

regional boundaries through the mobility of highly skilled personnel between companies.  Thus, 

according to this research, knowledge is transferred between people within and across firms through 

face-to-face meetings. 

 

Innovation, Density, and Creativity: 

In The Economy of Cities, Jacobs (1969) defines innovation as the process by which new work is 

added to old divisions of labor, thus creating new products, processes, or ideas, and thus also new 

divisions of labor.  Feldman (2000, 373) adds that “innovation is the novel application of 

economically valuable knowledge”.  In other words, innovation is a process of creating new, 

profitable products and ideas by combining observations or insights taken from elsewhere to the 

work one had previously been doing (Desrochers 2001, 378).    

 

Innovations occur when individuals with high degrees of existing creativity or knowledge make new 

and novel combinations of this knowledge with new insights observed or learned through spillovers.  

Individuals require a high degree of existing expertise to engage in innovation for a number of 

reasons.  First, an extensive and sophisticated knowledge of the initial work will provide insights into 

how to create “new combinations” when new observations arise through spillovers.  Clearly, if one 
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has a superficial knowledge of the initial work, it will be less obvious how to make interesting 

departures from that work or important additions to it.  Cohen and Levinthal (1994) note how this 

phenomenon exists at the firm level, referring to a firm’s ability to leverage its installed base of 

expertise to sift through and take advantage of the signals it receives from the outside as the firm’s 

“absorptive capacity”.  Additionally, Desrochers (2001, 376) adds that “…innovation ultimately 

depends to some degree on one person’s knowledge and skills”, while Lee (2001) has empirically 

documented the positive effects of high human capital workers on innovation.  Thus, the ideas 

necessary for innovation are embodied in individuals with the creativity, know-how, and skills to 

engage in technological advance.   

 

As described above, proximity is a key factor in this process of innovation.  The geographic 

proximity of individuals possessing high levels of human capital, skills, expertise, or creative 

capabilities enables their interactions, and these interactions facilitate the spillovers necessary for 

innovation.  To date, such a theory has not been sufficiently empirically tested in the literature 

except for in a recent paper using French data by Autant-Bernard (2001).  However, our analysis 

differs from theirs in that we examine metropolitan-level population density as a specific conception 

of geographic proximity.  Recent research from a variety of disciplines has begun to explore the 

relationship between forms of density and the production of new knowledge.  For example, at the 

state level, Ciccone and Hall (1996) find that employment density increases average labor 

productivity, while Sedgely and Elmslie (2004) find a positive relationship between state population 

density and innovation.  At the city level, Strumsky, Lobo, and Fleming (2005) positively link 

population density to metropolitan patenting, while Andersson, Quigley, and Wilhelmsson (2005) 

and working papers by Carlino, Chaterjee, and Hunt (2001, 2006) demonstrate the positive role of 

local employment density on innovation in Sweden and the U.S., respectively.  We construct a novel 

composite measure of population density, arguing that it better describes the geographic closeness 
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of people than previous conceptions of proximity and provides better intuition as to why the 

interactions between them occur. 

 

Also, our approach differs from previous density research in that we consider the effect of a specific 

form of density, namely the density of “creative capital”1.  Since innovation is an inherently creative 

act and not only traceable to those who meet a certain educational threshold, we feel creative capital 

offers more precision than the use of education-based human capital measures.  Highly creative and 

innovative people – like Bill Gates – are included in the creative class, whereas they would be 

excluded from human capital measures.  Additionally, as discussed above, we make use of 

population density measures instead of more commonly employed employment density measures.  

Innovation and growth are not singularly institutionally or firm focused, and our use of a broader 

population density measure is an attempt to capture that.  Our central hypothesis is as follows: High 

densities of creative capital leads to and makes frequent face-to-face interactions amongst them, thus facilitating 

“creative” spillovers, and subsequently innovations. 

 

In summary, innovation occurs when a person possessing creativity combines her existing expertise 

with observations learned through spillovers.  Such a spillover occurs when one individual’s 

creativity is transferred to another individual or firm.  These creative spillovers are in part believed to 

arise due to frequent face-to-face interactions and communication between individuals.   

Furthermore, these interactions are made more frequent by population density2.  Also, the literature 

explains that geographical proximity (here conceived of as density) makes it more likely that the 

“tacit” (non-codified) knowledge essential to innovation and embodied in individuals will be shared 

through face-to-face contact.  Gertler (2003, 79) explains that “tacit knowledge is a key determinant 

of the geography of innovative activity….[B]ecause it defies easy articulation and is best acquired 

experientially, [it] is difficult to exchange over long distances.” 
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III. Data and Methods 

Our models examine the effects of density on innovation.  We predict that metro area density will 

increase the impact of creative capital on innovation, and thus increasing returns to creative capital 

(creative spillovers) will be greater in the presence of high density.  Empirically, this would mean 

that in an equation in which “innovation” is the dependent variable, interactions between density 

and creative capital would be positive, and that the effect size would be larger than an effect size for 

creative capital alone.  A simple linear equation describes this hypothesis below.  
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As (Eq. 1) suggests, many other variables have been linked either theoretically or empirically to 

innovation, and we thus incorporate several of these into the analysis.  First, much analysis, like that 

of Griliches (1979), has been devoted to demonstrating the link between research and development 

expenditures (R&D) and innovation, and R&D should be taken into account in any analysis that 

looks to explain innovation.   

 

Second, studies by Florida and Gates (2001), Florida (2000, 2002a, 2002b), and Lee (2001) links the 

presence of both bohemians (defined as artists, musicians, writers, poets, etc.) and gays to 

innovation.  This research suggests that bohemians are artistic innovators, and places that attract 

them have an ecosystem which is open to new and different ideas.  These same places are more 

likely to be open to technological innovators.  Markoff’s work (2005) on the history of technology in 

Silicon Valley elaborates this relationship, documenting not only the co-location of artistic and 

technological innovators but also the social and spatial networks which connected them together 

and enabled them to influence one another.  Thus, we will also incorporate these variables into our 

analyses.   
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Our theory is that high densities of creatively oriented workers will promote metropolitan area 

innovation.  Thus, we will need measures of density, creativity, innovation, and other important 

controls [see Table 1].  The unit of analysis for this study is the Primary Metropolitan Statistical Area 

(PMSA). This is a geographical area comprised of a central county and its economically related 

outlying territories.  Census periodically redefines the component units that comprise PMSAs, and 

we use the 30 June 1999 definitions.  We use PMSAs for several reasons.  First, PMSAs capture 

economic spheres of influence.  Second, given that this study hopes to identify relationships at a 

regional level, instead of at a smaller scale, the PMSA appears most appropriate.  Note that all 

predictors chronologically precede the dependent variables included in the analysis.   

 

Density:  We employ several variables of population density.  We do this because no one measure 

fully captures the full “essence” of the density construct, but instead each measure reflects a 

different dimension.  Each of the measures clearly has relative strengths and weaknesses, described 

below. This provides fuller and more inclusive concept of density, and one that is more reflective of 

the proximity of people discussed above. 

 

Census Population Density: The two simplest measures are 1990 Census population / 1990 PMSA land 

area and 2000 Census population / 1999 PMSA land area.  We generated these measures by 

employing population data from the Census Department’s website3, and land area data from the 

Census Factfinder4 site.  The population data is organized by MSA and all components – counties, 

towns, etc.  MSA land area5 is found by locating the component land area (usually county) on the 

Factfinder site, and then aggregating these up to the MSA area.  This is done for all MSAs and 

PMSAs.  We divide MSA/PMSA population by the corresponding land area. 

 



 12 

Percent Population in Urbanized Areas: An alternative density measure is the percentage of metropolitan 

statistical area (MSA) population in Urbanized Areas in 1990.  Urbanized Areas are defined by the 

Census Bureau to be areas with a population density of at least 1000 people per square mile.  This 

measure also makes use of 1990 Census data.  Henceforth, this measure will be called percent in UA. 

 

Urban Density: Fulton et al (2001) compute density measures for 1982 and 1997, but instead of using 

just land area in the denominator, they derive acres devoted to urban uses from the National 

Resources Institute’s national survey of land use.  We convert acres to square miles.  This measure, 

PMSA population divided by urban acres is calculated for both 1982 and 1997.  Then, since we 

know the change in population for 1982 to 1997 and the change in urbanized acres for 1982-1997, 

we can divide the two, and thus calculate the “marginal density”.  This tells us how many people 

were added to the PMSA over the 15 year span for each new acre of land developed for urban use.  

The authors note that their measures are not simply residential densities, but instead overall densities 

based on all land urbanized to meet population growth6.   

 

Each density measure has strengths and weaknesses, and thus is included in the analysis for different 

reasons.  A major strength of the Census Population Density measure is that it is conceptually 

simple – it provides a simple average density for each MSA, and is easy to interpret.  Furthermore, 

given that it measures residential population density, it gives an intuitive description of the closeness 

of people to one another in an MSA, and thus is reflective of the above theory.  Lastly, the data to 

construct these measures is readily available, even down to small units like tracts.  Yet, Census 

Density has several weaknesses.  First, given that the total land area for an MSA or PMSA changes 

very little across years, over time the variables primarily reflect population changes, even accounting 

for changes to MSA definitions.  Also, these measures abstract out a lot of information.  Specifically, 
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they do not depict how population is distributed within an MSA, instead, often incorrectly, averaging 

population evenly over the entire MSA.   

 

The Urban Density measures, along with marginal density, have distinctive strengths.  First, Fulton 

et al’s (2001) study was the first to measure metropolitan area density using an actual measurement 

of urban land.  Given that urbanized land has been drastically increasing over time, we are more 

likely to observe decreases in density over time than with the Census Population Density measures if 

population grows at a slower rate.  Clearly, these measures more closely track increases in urban 

lands, and show how density reacts to these changes over time.  Thus, these measures are not simply 

charting changes in population, but instead are documenting relationships between population and 

land area, and doing a better job at this than Census Population Density7.  Yet, similar to Census 

Population Density, these measures also are only an average density across the entire MSA/PMSA, 

and thus abstract out much information about how population is distributed within an MSA/PMSA. 

 

To the extent that the Percent in UA measure defines land as urban by its ability to meet a particular 

residential density threshold, it once again captures the notion of the closeness of people depicted in 

the theory section.  But, this measure is not explicitly density, but instead just a description of a 

minimum density.  Thus, with this measure we do not even have an estimate of an average density 

across the whole MSA, and do not know whether most of the MSA contains densities close to the 

threshold, or whether segments of the MSA have densities high above it.  Thus, here too, much 

information is also abstracted away.   

 

Instead of measuring employment density, as do Carlino, Chaterjee, and Hunt (2001, 2006), we 

utilize measures of population density.  This choice stems from theory.  We prefer not to restrict the 

interactions to ones occurring at work or in employment environments.  Urban, dense places make 
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possible many kinds of interactions, in different places, and amongst and between many kinds of 

people.  We posit that these diverse interactions promote innovations.  We thus feel that there is 

benefit to keeping the definition of density broad. 

 

Methods: 

Principal Components Analysis: Clearly, given the similarities amongst these density measures, 

substantial multi-collinearity may exist between them, thus complicating attempts to attribute 

explanatory power in a regression to any or all of these variables.  Indeed, Pearson and Spearman 

correlations amongst these variables reveal such multi-collinearity [see Table 2].  To avoid multi-

collinearity between the density variables while also allowing for more parsimonious models and 

improved measurement of indirectly observed concepts (Hamilton 1992), we employ principal 

components analysis to construct one composite density measure.  The component explaining the 

majority of the variance in the six density variables also has positive loadings on all six measures, and 

thus can be interpreted as a “density” component [see Table 3].    We create a composite density 

index by linearly combining the six density variables, standardized and weighted by the component 

loadings8.     

 

Table 4 illustrates several MSAs measured on each of the density measures, including the composite 

index.  Given that the composite index is a linear combination of standardized variables, positive 

observations indicate above average densities, while negative values indicate below average densities. 

 

Innovation: The dependent variable is 1999 metropolitan area utility patents per 100,000 people. It 

measures innovation by using simple utility patent count data downloaded from Hall, Jaffe, and 

Trajtenberg’s NBER patent database, but originally available from the U.S. Patent and Trademark 

Office.  Also, as described later, we use 1990 metropolitan area utility patents per 100,000 people as 
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an independent variable.  Hall, Jaffe, and Trajtenberg (2001) note that patents have numerous 

advantages as data for the study of innovation and technological change.  Patents contain highly 

detailed information on the innovation itself, but also about the inventor, the originating 

technological area(s) and industry, etc.  In addition, there is both a very large “stock” and “flow” of 

patents, so there exists a wealth of data available for research.  Griliches (1990) and Scherer (1983) 

both note the extent to which there exists a strong relationship between industrial patenting and the 

conduct of research and development, implying that patents are a good measure of inventive 

activity.  Patent count data reaches back at least 100 years, making available long time series of data.  

Several recent papers point to patents as appropriate measures of spatial innovativeness and 

geographical information.  Ó hUallacháin and Leslie (2005) and Ceh (2001) use patent counts as a 

measure of the innovative potential of U.S. states, finding over the past several decades a marked 

shift in inventive activity from the traditional manufacturing belt to the western states.   Ó 

hUallacháin (1999) probes the geography of innovation by exploring metropolitan areas and patents.  

The paper finds that most patents awarded to Americans are obtained by residents of metropolitan 

areas, with large metros predominating.  Of course, simple patent count data also have serious 

limitations.  First, as Griliches (1990) points out, not all inventions or innovative ideas are patented 

or patentable.  Second, as Hall, Jaffe, and Trajtenberg (2001) and Griliches (1990) recognize, 

innovations differ enormously in their technological and economic importance and patent counts 

are seriously insufficient in their ability to capture this underlying heterogeneity.  Instead, as 

Trajtenberg (1990) notes, patent counts are found to be indicative of the input side of the innovative 

process, as in R&D expenditures.  To address these limitations, all analyses will also be conducted 

using citation-weighted patents as the dependent variable, since “patent counts weighted by a 

citations-based index appear to be highly correlated (over time) with independent measures of the 

social gains from innovations” (Trajtenberg 1990, 172).  Additionally, the shift to a knowledge-

based, service oriented economy from manufacturing creates important shortcomings with patent 
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data.  Specifically, Hipp and Grupp (2005, 524-5) suggest that since the service innovation process 

“does not necessarily aim to acquire or generate technical know-how”, patents play a limited role.  A 

final shortcoming of simple patent counts is that patents are heavily concentrated in particular 

industries.  For example, patents work especially well in bio-technology, an industry heavily tied to 

universities.  Thus, since our patent data reveals the industry to which the patent applies, we can also 

construct industry weighted patent data, and thus we will also conduct all analyses with this 

dependent variable.   

 

Creative Capital: This is a measure invented by Florida and Stolarick9 using data from the 1999 

Bureau of Labor Statistics Occupational Employment Statistics Survey.  The intent of the measure is 

to capture all employment in a region that has a creative component.  The survey provides counts of 

employees in different occupational categories, so thus we can compute the percentage of creative 

employees for each PMSA.  Yet, since the explanatory variables must temporally precede the 

dependent variables in order to simulate causation, and since the Florida/Stolarick measure uses 

data from the same year as the innovation data, we had to re-create the creative capital variable using 

the 1990 Decennial 5 percent Census Public Use Microdata Sample10.    

 

As mentioned earlier, studies by Florida and Gates (2001), Florida (2000, 2002a, 2002b), Lee (2001), 

and Lee, Florida, and Acs (2004) link the presence of gays and bohemians to innovation, growth, or 

new firm formation.  They explain this by claiming that new ideas arise due to a multiplicity of 

people and perspectives, and that the presence of gays and bohemians in metropolitan areas is 

indicative of a tolerance of such a wide variety.  Thus, we want to account and control for these 

factors in our regressions. 
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Gay Index:  This variable, originally calculated by Black et al (2000), is based on the 1990 PUMS 

data, and is a location quotient measuring the over- or under-representation of coupled Gays and 

lesbians in an MSA.  See Black et al (2000) for more information on this measure.   

 

Bohemian Index: This variable, attributable to Florida (2000, 2002a, 2002b), is also based upon the 

1990 PUMS, and is a location quotient of the number of bohemians in an MSA.  As Lee, Florida, 

and Acs (2004) note, it includes authors, designers, musicians, composers, actors, directors, painters, 

sculptors, craft-artists, artist printmakers, photographers, dancers, artists, and performers.   

 

Research and Development: MSA-level total R&D is not available, and thus must be estimated.  A 

simple estimate is a linear combination of state-level R&D and the MSA-level percentage of 

scientists and engineers.   We employ a very unrestrictive combination, by simply additively 

including the two variables in a linear regression11.  State-level R&D is available via the National 

Science Foundation’s Web Caspar12.  As noted in Lee (2001), scientists and engineers serve as a 

proxy for R&D expenditures.  Scientists and engineers as a percentage of total MSA employment is 

available from the 1990 Decennial Census 5 percent PUMS, and is calculated on a per capita basis.   

 

Milken Tech-Pole Index:  As DeVol et al (2001) state, “Regional clusters [of high-tech industry] may 

be more important in fostering innovative economic activity than the large multinational 

corporations that engage in promoting it.”  Thus potentially, the prevalence or spatial concentration 

of high-tech industry in a metropolitan area may be highly related to the metro’s capacity for 

innovation.  Thus, measures of this concentration are used here as proxies for patents to test the 

robustness of the empirical models.  We make use of the measures of high-technology industry 

spatial concentration constructed by DeVol et al of the Milken Institute.  They form their “Tech-

Pole” index by multiplying together their two individual measures of concentration, (1) high-tech 
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location quotient13 and (2) the metro area proportion of national high-tech output.  The location 

quotient effectively measures the importance of an industry on a local economy, but unfortunately 

does not adjust for the size of the city.  Therefore, on this measure, the impact of small metros with 

high local concentrations of high-tech industry on the national economy may be exaggerated.  

Likewise, large metros may rank highly on the measure of metro area proportion of national high-

tech output simply due to their size.  To alleviate these concerns, DeVol et al formed a composite 

index that combines the two measures by multiplying them.  The composite measure is their “tech-

pole”, and is intended to measure the technological “gravitational pull” that a metro exerts. 

 

Creative – Density Interaction: To assess the joint effects of creativity and density on innovation, we 

construct a multiplicative interaction term of the scaled composite density index and percentage 

creative capital.  We feel this measure provides a good proxy for the actual density of creative 

capital14.  One would expect actual creative density to increase with overall density, and fortunately, 

we observe our interaction term increasing with overall density.  This variable is of primary interest 

in our empirical tests, and if our theories are borne out by the data we expect this interaction term to 

obtain a positive coefficient.  A final comment about this measure should be made.  Clearly, creative 

capital is comprised of engineers, scientists, artists, architects, athletes, and several other 

occupations.  Obviously, this measure is present in all regressions, but, importantly, also included 

separately are bohemians and percent scientists and engineers.  Seemingly, one could raise the 

objection that we double-count scientists and engineers and bohemians, given that they are controls 

in the regressions and are part of the creativity measure.  However, we feel that creative capital 

should be conceived as an entity unto itself, and that important "reactions" or "interplay" occur 

when its individual components are interspersed together that differ from those occurring if only 

scientists and engineers or only bohemians were present.  So, the whole is greater than the sum of its 



 19 

parts.  We still need to account in a regression for the individual effects of scientists and engineers 

and bohemians, to reinforce the predominant importance of the “reactions” described above. 

 

 

IV. Findings 

Regression Estimation Results:  

We estimated a series of regressions and other tests to assess the evidence for our theories15.  Table 

5 provides OLS estimation results using 1999 patents per 100,000 people as the dependent variable.  

The results provide ample evidence in support of our theory.  The coefficient on the creativity-

density interaction term from this regression is positive (2792.2) and significant, as expected.  This 

result lends weight to our hypothesis that the density of creative workers facilitates innovation.  

Furthermore, we might be interested in the marginal effects of the Composite Density Index and 

1990 Percent Super-Creative Employment on 1999 patents per 100,000 people.  To recover these 

marginal effects, we compute the respective coefficients with all other variables at their means.  

When this is done, we observe that the Composite Density Index coefficient is now positive (30.96), 

and the Creative Capital coefficient is also positive (222.9).  These results both align with our 

theories.   

 

An unexpected result is that the percentage of scientists and engineers appears to have a negative 

impact on 1999 patents per 100,000.  Several explanations are available.  As Chapple et al (2004) 

point out, metropolitan areas with high employment shares in “high-tech” occupations are often 

smaller, emergent regions like Austin or Raleigh-Durham.  Such places may not be sufficiently 

diversified occupationally to engender high rates of inventive activity.  Chapple et al conclude that 

high-tech employment share measures may thus penalize larger cities with a large number of high-

tech occupations but with a more diversified economy.  Additionally, different industries have 
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different propensities to patent.  Such differences are lost in an ‘overall’ share measure of the sort 

employed here.  Finally, we might conjecture that the negative correlation is actually a reflection of 

scientific or research bureaucracy.  More scientists and engineers might entail (i) more overhead and 

not necessarily better innovative results or (ii) patents registered elsewhere by a multi-locational firm.   

 

Also notable from Table 5 is the insignificance of both the bohemian and gay indices.  Apparently, 

relative to the effects of creative-density, these variables, along with percent scientists and engineers, 

play a lesser role in facilitating innovation.  The noticeable positive effects of the creative-density 

term on innovation as compared to the negligible effects of bohemians and scientists and engineers 

taken alone points to the importance of conceiving of a more inclusive creative class, as Florida 

(2002c) does.  Important for the current analysis though, it especially points to the importance of the 

interactions between the members of this broader “class”.  As postulated earlier, the “whole” of this 

class is greater than the sum of its parts, in large part due to the relationships between its members 

that are made possible by density16.   

 

Finally, we note the very small, insignificant coefficient on 1990 State total R&D per 100,000 people.  

First, given that this variable is measured at the state level instead of at the PMSA level, potentially it 

does not achieve as much variation as our other variables, thus effecting its’ usefulness in hypothesis 

testing.  Theoretically though, the slightly negative coefficient could indicate that there are 

decreasing returns to R&D dollars, which is a fairly standard conclusion in contemporary R&D 

research.    

 

Regressions Estimations by metro size: Although all of the variables included in regressions to this 

point have been in per-capita terms, we have not sufficiently dealt with the possibility that creative-

density might have a different effect on innovation among cities of different sizes17.  In other words, 
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we need to consider the possibility that size and density might interact.  For example, we might think 

that even after variables are in per-capita terms, bigger cities have inherent qualities or advantages 

that increase the effect of creative-density on innovation.  Of course, there is also the issue that 

bigger cities are typically denser, which is demonstrated by the correlation of 0.53 between the 

composite density measure and 2000 population.  To account for this potential interaction, we first 

estimated four separate regressions for various metro size quartiles (1 million and above, 500,000-

1million, 250,000-500,000, and less than 250,000).  The overriding result suggests that, in fact, the 

effect of creative-density on innovation is in absolute terms largest for the largest metros (above 1 

million population), and the relationship is only significant at that size level.  These results reflect 

those of Ó hUallacháin (1999, 614), who found that the largest U.S. metropolitan areas garner the 

majority of patents awarded to Americans.  That paper proposed that the innovative advantages 

accruing to big cities arose from “lopsided concentrations of technologically intensive manufacturing 

sectors and an uneven distribution of well-educated people”.  This result does not imply that 

creative-density does not matter and that metro size is the only meaningful explanatory factor, but 

that creative-density and size positively interact.  Of course, these quartiles are somewhat arbitrary, 

and so another option is to estimate one regression with a creative-density*population interaction 

term.  When we estimate this regression (see Table 6) with 1999 patents per 100,000, the coefficient 

on creative-density is again positive and significant, and in fact has a larger coefficient than in Table 

5 (4344.5 to 2792.2).  Interestingly, the effect of the interaction between creative-density and 

population on patents is close to zero and significant.  Seemingly then, these city size results are 

mixed and inconclusive.  However, if we decide that density were to primarily play a positive role 

among larger cities, a policy recommendation arising from this would be that larger cities with high 

creative-densities should undertake measures to maintain them or risk losing their inherent 

innovative advantage18. 
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Causality Issues: Briefly, we will discuss our methods for dealing with potential reverse causality or 

endogeneity questions in our models.  To mitigate the possibility that causality might run in the 

opposite direction, we ensure the appropriate temporal nature of our variables, making sure all of 

the independent variables precede the dependent variables.  Second, we control for the initial stock 

of innovation, thus separating the role of creativity and density from their capacity for just proxying 

for innovation.   

 

More specifically, one might argue that innovation raises incomes, thus subsequently raising people’s 

abilities and desires to fund museums and other artistic undertakings.  We recognize this as a 

potential issue, and could look for instruments for our creativity measures.  One such measure might 

be per-capita spending on the arts, however this might only capture “mainstream” cultural 

programming and not the more “bohemian” culture we are attempting to capture.  Actually though, 

this argument would support the finding that there is a high correlation between innovation and 

bohemians rather than creatives.  Yet, the creative measure is not a proxy for bohemians.  The 

creative measure primarily captures artists, computer scientists, science, architecture, and education 

workers.  Importantly, we find that bohemians do not significantly enter regressions when they are 

included alongside creatives, evidence against the above “art-funding” argument.   

 

Future Research: While outside the scope of this research project, several interesting possibilities 

remain for future research.  As mentioned above, we would like to evaluate the effect of the absolute 

number of creative workers on innovation and also create an actual “creative density” measure.  

However, potentially more pressing is the fact that our density measures neglect differences in 

density within metro areas, instead averaging over these differences.  To deal with this, we could 

create a weighted average density measure, weighting by the population of each census tract, and 



 23 

then aggregating up to the MSA19.  Clearly then, dense, highly populated tracts would be weighted 

heavily.   

 

Also, as the data becomes available, it would be preferable to consider analyses done in this study at 

a unit smaller than the MSA/PMSA (Lang and Danielsen 2005, 207; Sawicki 2003, 91).  For the 

purposes of deciphering how population density relates to and influences idea flows and knowledge 

generation, the Metropolitan Area is likely too large a unit of observation.  This is especially true if 

the majority of “new knowledge” flows from particular clusters in the MSA or PMSA, like a central 

city or county.  Given this, if we were to use a smaller unit of observation, when we computed the 

measure “patents-per-capita” we would no longer divide the number of patents by the total MSA 

population like we do now, but only by the “clusters’” population.  Thus, not only would we 

observe higher patents-per-capita, but likely also a greater association between new knowledge and 

density.  However, this caveat aside, for a first take, observing these relationships at the MSA/PMSA 

level is still a useful exercise.   

 

Lang and Danielsen (2005, 206) argue that Florida does not sufficiently justify how and why 

geography and place matters in making the creative class.  They wonder why Florida did not address 

“how creative subcultures form, how [they] are sustained,…, and [whether] there are intrinsic 

qualities to certain cities in terms of their ‘urban’ quality that would predict the rise of creative 

subcultures?”  Lang and Danielsen refer to Claude Fischer’s important suggestion that higher urban 

density leads to more intense and varied subcultures.  Thus, future research would more fully 

investigate this important relationship between density, size, and urban creative subcultures.  

Milligan (2003, 24) suggests that there “is a strong argument to be made for the role of the built 

environment in stimulating tolerance, creating awareness of social problems, and promoting certain 
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forms of interaction.”  As such, future research might look into the how variations in urban form 

and design impact the presence of the creative class in cities as well as innovative activity.   

 

Finally, a future historical analysis might lag density to the age of the city in order to take into 

account the state of transport costs at the time of urbanization.  One might argue that old places like 

New York are dense because transport costs were higher as the city was urbanizing, as compared to 

Los Angeles. 

 

V. Conclusions 

Our research has examined the role of density and creativity in metropolitan area innovation.  Using 

linear regression, we examined the joint and separate effects of population density and creativity on 

innovation for 240 metropolitan areas in the U.S.  We employed principal components analysis to 

construct a novel composite population density measure, which was then interacted with a creative 

occupations measure to give our final “creative-density” variable.   These analyses tested our major 

hypothesis that high densities of creative individuals would promote and make frequent face-to-face 

interactions, thus facilitating creative spillovers, and subsequently innovations.   

 

Our finding that creative-density enters positively and significantly in a regression with patents as the 

dependent variable supports our hypothesis that the density of creative workers promotes 

innovation.  Additionally, we found that the marginal effects for density and creativity, taken 

separately, both exhibit positive relationships with metropolitan patenting.  These results strongly 

reinforce the extant geographic literature on spillovers and agglomeration which posits that 

innovation, learning, and knowledge creation is strongly geographically and spatially mediated.  

Strong currents in geography and social science hold that proximity matters, and this research is 

firmly situated in that tradition.  Also, these results support recent claims that intellectual human 
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capital embodied in individuals is also predictive of and important for innovation.  However, our 

research and findings extends upon these previous two traditions in several crucial ways.  First, it 

merges them by asserting that proximity and intellectual human capital work together to power 

innovation.  It is the geographic concentration of people with expertise, skills, and knowledge that 

powers the exchange and spillovers that precede innovation.  Our analysis, especially the 

construction of our creative-density measure, reflects this important observation.  Second, we 

propose population density as a specific conception of geographic proximity that better explains and 

accounts for the actual face-to-face interactions that underlie knowledge spillovers.  We consider this 

an important improvement over past geographical studies on innovation.  Third, it employs an 

occupation-based measure of intellectual human capital – creative occupations – building and 

extending upon Florida’s important contributions in this area.  Taken together, our approach and 

findings point to a new direction for geographic research, and consequently, we hope that arising 

from this study will be a fuller understanding of the spatial determinants of innovation. 

 

   

 

 

 
 
 

 
 
 
 
 

 
 
Notes:
                                                

1. Florida’s creativity theory attempts to specify precise linkages and mechanisms between tolerance and 
talent, between talent and innovation, and between innovation and growth.  Florida (2002a) shows the linkages here 
clearly with a path model that specifies the links between tolerance, talent, innovation and income growth.  These 
linkages are also quite clearly spelled out and developed in Florida (2005).  In contrast to extant theory, Florida’s 
creativity theory says that talent is not a stock with which regions are endowed, but a flow which depends upon 
tolerance or openness.  Accordingly, places that are open to artistic innovators will be more likely to produce, retain 



 26 

                                                                                                                                                       
and attract innovators of all sorts including technological innovators.  Places that produce, attract, and retain more 
technological innovators and combine them with Schumpeterian economic innovators or entrepreneurs will be more 
likely to generate new firms and industries and thus to grow.  The current paper does not attempt to test the entirety 
of this relationship but focuses in detail on one key component – one central mechanism – and that is the effect of 
geographic concentration or density on this process.  It goes beyond the extant literature on the question by 
specifying the role of this quintessentially spatial element, density, as a key element of the black box of innovation. 

 
2. Density is what enables frequent, unpredictable, serendipitous meetings and interactions.  Density is not 

subordinate – conceptually or empirically – to interaction as some have suggested, and we thus do not make an 
empirical distinction between the two in this paper.  For instance, one might use transport systems as a measure of 
accessibility, but we would argue that it is unlikely that low-density living combined with good transport systems 
would have the same “buzz” (Storper and Venables 2004) as high density locations.    

 
3. www.census.gov/population/cen2000/phc-t3/tab01.txt – this file has population data for Metropolitan 

Areas and their components for 1990 and 2000, using 1999 MSA definitions.  
 

4. factfinder.census.gov 
 

5. A number of important points need to be made clear about land area.  First, it is assumed that the 
component land area (county, town, etc) does not change much over time.  Thus county or town land area data from 
the 2000 Census Factfinder is taken to pertain equally well to 1990.  Changing much however are the MSA and 
PMSA definitions across years, in this case 1990 to 1999.  These changes are primarily reflected in differences in 
the components that comprise the MSAs.  Counties are often added and dropped from MSAs, and we have 
accounted for these changes in our calculations of MSA/PMSA land areas for these two years.  In making these 
changes, two issues arose.  First, in 1990, some regions were defined as an MSA, but in 1999 were subsumed under 
an existing MSA/CMSA.  When this happened, we conclude that the MSA/CMSA existed in 1990 (without the 
subsumed MSA), and thus have them both included as datapoints in 1990.  Second, in several cases, regions existed 
as CMSAs in 1990, but then became MSAs in 1999.  Given that no new counties are added or dropped, I simply use 
the MSA definition for both 1990 and 2000.  

 
6. As documented in the Fulton et al (2001) report, urban land is defined by the NRI as follows: A land 

cover/use category consisting of residential, industrial, commercial, and institutional land; construction sites; public 
administrative sites; railroad yards; cemeteries; airports; golf courses; sanitary landfills; sewage treatment plants; 
water control structures and spillways; other land used for such purposes; small parks (less than 10 acres) within 
urban and built-up areas; and highways, railroads, and other transportation facilities if they are surrounded by urban 
areas. Also included are tracts of less than 10 acres that do not meet the above definition but are completely 
surrounded by Urban and built-up land. Two size categories are recognized in the NRI: areas of 0.25 acre to 10 
acres, and areas of at least 10 acres.  The authors 1982 population data comes directly from Census estimates, and 
their 1997 estimates are based upon a straight line interpolation of the 1990 and 2000 Census estimates.  The authors 
also make use of NECMA definitions for several New England regions including Boston MA, New London CT, 
Hartford CT, Springfield MA, Lewiston-Auburn ME, Pittsfield MA, Portland ME, Providence RI, and Bangor ME.  
Given that I use MSA/PMSA definitions in my dataset, I am forced to use their NECMA estimates of density in my 
dataset.  More detailed information about their methodology is available in their report. 
 

7. Comparing a metro’s urban density across years gives an idea for the relative rates at which they are 
adding population and urban lands.  If a metro is urbanizing land faster than it is adding population, then its urban 
density will decrease across years.  Conversely, if a metro adds population faster than urbanized land, then urban 
density will increase across years.  Also, a metro’s marginal density will always be positive if it adds population, 
even when density decreases across years.  But, often when land is urbanized faster than population grows, marginal 
density will be small.  High marginal densities however are often correlated with the size of the city, so that places 
that have already large population bases and that add more population may tend to have larger marginal densities.  
So, for an individual metro more information is revealed by comparing the urban density measures across years.  
Finally, marginal density will be negative if a metro loses population.   
 

8. This composite density measure is roughly in terms of standard deviations, with some values greater than 
zero, other less than zero.  Subsequently, we interact this variable with another continuous variable, percentage 
creative employees in a PMSA.  To ensure that each variable is on a similar scale (between 0 and 1), we re-scale the 
composite density index such that all values are between 0 and 1, thus creating a variable that is similar in form to 
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percentage creative employees.  The rescaled density measure takes the form:    
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9. The measure was introduced in The Rise of the Creative Class, Florida (2002c). 

 
10. This measure includes the following occupations: Education Administrators, Engineers, Architects, 

Mathematical and Computer Scientists, Natural Scientists, Postsecondary Teachers, Teachers except postsecondary, 
Librarians, Archivists, Curators, Social Scientists, Urban Planners, Writers, Artists, Entertainers, and Athletes. 
 

11. One could easily conceive of more restrictive combinations.  We could set up an equality of 
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= .  Then, MSA-level R&D could be solved for.   

 
12. caspar.nsf.gov 

 
13. Dividing the high-tech percentage of metro output by the high-tech percentage of national output forms a 

location quotient (LQ) for a metro.  A LQ of 1.0 means a metro’s concentration of high-tech output is equal to the 
nation’s concentration, while greater than 1.0 means a metro’s concentration is higher than the nation’s 
concentration.   
 

14. Given our use of 1990 PUMS data, we are not able to recover the actual density of creative capital.  
Doing this would require that we obtain, for the numerator of a density measure, an absolute number of creative 
workers.  But, since the PUMS primary geographic unit, the PUMA, often spills across numerous PMSAs, we are 
forced to exclude those PUMAs from a final total.  Thus, we only use PUMAs that are entirely within a PMSA, 
clearly complicating any attempt to recover an absolute number of creative workers.  The percentage of metro area 
employment that is creative is more appropriate because we assume that on average, the excluded PUMAs are not 
different than those included, and thus the percentage creative capital is approximately accurate.   Finally, we can 
attempt to estimate the actual “creative-density”, by multiplying the percent super-creative employment by 1990 
population, and then dividing by 1990 Census land area.  We did this, and note that it’s correlation with the creative-
density interaction is r = 0.8707.  We thus use the interaction term, because it enables use of our constructed 
composite density index. 

 
15. Beyond the results reported in Table 5, we estimated several other regressions using proxies for patents 

as the dependent variable to test the consistency of the findings.  When the 2000 Milken Tech-pole Index and its 
components – the high-tech location quotient and tech-share – are inserted as dependent variables, the regression 
estimation results are very similar to those using patents as the dependent variables.  The creative-density interaction 
is positive and significant in the tech-pole and tech-share regressions, and positive and insignificant in the location 
quotient regression.  Next, we estimated regressions using citation-weighted and industry-weighted patents.  The 
interaction term once again is positive and significant.  Overall, these results provide additional evidence in support 
of the hypotheses.  Also, we undertook several procedures to guard against the possibility that our results were 
determined or overly reliant on the presence of outliers and influential points.  First, we took out the top 5 percent of 
the observations from 1999 Patents / 100,000 and the creativity-density interaction term.  This resulted in 22 
observations being removed from the dataset.  When the trimmed 1999 Patents / 100,000 is regressed on the 
trimmed interaction term and the other independent variables, we again observe a positive and significant coefficient 
on the creativity-density interaction term.  Finally, the estimation results of an iteratively weighted least squares 
robust regression procedure also return a positive and significant coefficient on the interaction term.   

 
16. When we remove creativity and creative-density, the effect of bohemians on patents turns from negative 

to positive, but remains unsignificant.  The effect of gays on patents had been positive but insignificant with 
creativity and creative-density, and when we remove these two variables gays becomes significant. 

 
17. Current empirical work, such as that by Duranton and Puga (2001) and Feldman and Audretsch (1999) 

look at the role of diversity and city size on innovation, finding that larger, more diverse cities and regions are 
typically more innovative.  Among many others, these researchers have probed this diversity/size relationship.  
Given the different focus of our research, we instead are interested in whether or not density and city size interact in 
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some important way to promote innovation.  As such, we include several preliminary empirical tests probing these 
effects. 
 

18. An additional issue associated with metro size is that a critical mass or threshold of creative persons must 
be achieved before their presence can have any discernable effect on innovation.  In other words, we would look to 
see whether the absolute number of super-creative employees matters more than the percentage, and also to see 
whether this critical mass predominates the effect of density.  We felt that while this was an important issue, it was 
outside the scope of this study, and thus chose to pursue it at a later date. 
 

19. However, by not using the weighted average density measure, and by using the PMSA as our unit, we 
are able to construct and use the composite density index.  The value of this composite index was discussed earlier. 
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Table 1: Descriptive Statistics 
 

Variable Obs Mean Std. Dev Min Max 
1990 Census Population Density  321 430.12 855.04 11.47 11768.06 
2000 Census Population Density  331 438.08 921.36 5.41 12956.90 
1982 Urban Density  325 2998.35 1764.19 647.32 22311.08 
1997 Urban Density  327 2354.68 1261.82 775.32 12604.75 
Percent in Urbanized Areas 326 69.45% 16.13% 22.50% 98.30% 
Marginal Density 325 997.86 1386.55 -4133.41 9318.94 
Composite Density 294 0.00 1.85 -2.09 18.62 
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1990 Super Creative percent 273 8.91% 2.60% 4.35% 19.58% 
1999 Patents / 100,000 pop. 331 25.39 31.89 0 281.06 
1990 Patents / 100,000 pop. 313 17.47 16.95 0 111.10 
1990 Bohemian Index 242 0.924 0.366 0.316 2.90 
1990 Scientists & Engineers 273 0.719% 1.28% 0.02% 9.32% 
1990 Gay Index 331 0.659 0.695 0.00 8.75 
1990 State R&D / 100,000 pop. 50 6334.29 2770.53 1950.11 20270.26 
2000 Milken Tech-Pole  315 0.507 2.01 .000025 29.96 
2000 Milken Location Quotient 346 0.827 0.726 0.032 5.167 
2000 Milken Tech-Share 346 9.23 28.53 0.0008 100 
1990 Citation Weighted  
Patents / 100,000 pop. 309 121.83 144.59 0.764 890.10 
1999 Citation Weighted 
Patents / 100,000 pop. 329 1.043 2.06 0.00 19.08 
1999 Industry Weighted  
Patents / 100,000 pop. 329 22.24 21.70 0.151 156.61 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Density Correlation Matrices 
 
Pearson Correlations 
 

 (1) (2) (3) (4) (5) (6) 
(1) Census Density 1990 1      
(2) Census Density 2000 0.9948 1     
(3) Percent in UA 0.3068 0.3001 1    
(4) Urban Density 1982 0.5375 0.5298 0.2556 1   
(5) Urban Density 1997 0.7557 0.751 0.3751 0.7298 1  
(6) Marginal Density 0.0447 0.0622 0.3008 0.1959 0.4565 1 
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Spearman Correlations 
 

 (1) (2) (3) (4) (5) (6) 
(1) Census Density 1990 1      
(2) Census Density 2000 0.9645 1     
(3) Percent in UA 0.4405 0.4403 1    
(4) Urban Density 1982 0.3504 0.3159 0.3023 1   
(5) Urban Density 1997 0.3943 0.3867 0.4285 0.8712 1  
(6) Marginal Density 0.1523 0.194 0.3173 0.1005 0.3606 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Principal Components Analysis 
 

Panel 1 – Component List 

(Principal components; 6 components retained) 

Component Eigenvalue Difference Proportion Cumulative 
1 3.41978 2.21252 0.5700 0.5700 
2 1.20726 0.47018 0.2012 0.7712 
3 0.73708 0.21352 0.1228 0.8940 
4 0.52356 0.41564 0.1228 0.9813 
5 0.10792 0.10352 0.0180 0.9993 
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6 0.00440 . 0.0007 1.0000 
 
 
 

Panel 2 – Eigenvectors/Loadings 

                                                                                                   Components 
Variable 1 2 3 4 5 6 

1990 Census Density 0.48519 -0.32814 0.12749 -0.29376 0.22722 0.70903 
2000 Census Density 0.48757 -0.31512 0.11395 -0.30581 0.24409 -0.70490 
1982 Urban Density 0.40929 -0.01205 -0.38352 0.76710 0.31113 0.00142 
1997 Urban Density 0.50456 0.11863 -0.22743 -0.04724 -0.82302 -0.00530 
Percent in Urbanized Area 0.26572 0.43773 0.81279 0.27735 -0.01449 -0.00584 
Marginal Density 0.18482 0.76629 -0.33366 -0.39061 0.33826 0.0179 

      
 
 

Panel 3 – Component Estimates/Scores 

                                                  Scoring 
                                                                                                            Coefficients 

Variable 1 
1990 Census Density 0.48519 
2000 Census Density 0.48757 
1982 Urban Density 0.40929 
1997 Urban Density 0.50456 
Percent in Urbanized Area 0.26572 
Marginal Density 0.18482 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Density Measures 
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989.55 3990.9

756.24 3208.2

584.7 3441.3

510.0 2239.4

1632.8 4161.6

1694.5 2956.6

7490.7 13560.2

8163.2 12438.6

726.6 2970.3

767.9 2135.6

11768.1 13611.6

12956.9 12604.8

176.5 2087.5

200.8 1719.7

141.4 2103.6

160.2 1764.6

219.8 3137.9

174.9 1889.5

228.9 2417.1

249.2 1923.4

445.5 2354.6

496.0 1973.6

1441.7 3499.3

1552.0 2699.3

<250,000 persons

130.6 3124.3

138.2 2301.9

60.3 2121.7

78.7 2044.2

31.9 2097.3

32.4 1454.9

29.3 1494.4

31.9 1134.5

>500,000 &    

<1,000,000 persons

Census Population 

Density*

Washington, DC

Pittsburgh, PA

Boston, MA

New York City

Region

>1,000,000 persons

Akron, OH

Jersey City, NJ

Tulsa, OK

Little Rock, AR

>250,000 &                               

<500,000 persons

Columbus, GA

Corpus Christi, TX

Lancaster, PA

Trenton, NJ

Abilene, TX

Bellingham, WA

Duluth-Superior, MN-WI

Rapid City, SD

Urban            

Density
#

Marginal    

density

1890.9

-581.9

646.1

4090.8

308.78

-4133.4

784.8

650.3

232.3

722.7

1144.4

616.1

111.9

1874.9

-639.6

521.4

Percent in 

UA

78%

71%

77%

92%

83%

92%

54%

66%

83%

76%

45%

92%

90%

44%

51%

75% -1.22

-1.51

-1.02

-0.09

1.66

-0.66

-0.45

-0.28

-0.84

-1.01

18.62

0.37

Composite Index

14.84

1.86

-0.01

1.26

 

* Top value refers to 1990, the bottom value refers to 2000 
# Top value refers to 1982, the bottom value refers to 1997 
 

 

 

 

Table 5: OLS Regression with Patents 
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Dependent Variable:   
1999 Patents / 100,000 population (1) (2) (3) (4) (5) 

Independent Variables:      

Composite Density Index* 
-306.89 
(0.000) 

-218.10 
(0.000) 

2.32 
(0.899) 

-323.80 
(0.000) 

-3.47 
(0.850) 

1990 % Super-Creative Employment* 
152.72 
(0.183) 

-59.20 
(.534) 

180.99 
(0.012) 

66.03 
(0.593)  

Creativity-Density Interaction Term 
4032.35 
(0.000) 

2792.2 
(0.000) 

 
 

4082.7 
(0.000)  

1990 Bohemian Index  
-0.100 
(0.986) 

-1.16 
(0.847) 

12.60 
(0.096) 

4.65 
(0.409) 

1990 Percent Scientist & Engineers  
-162.41 
(0.252) 

33.33 
(0.805) 

-97.51 
(0.598) 

42.44 
(0.756) 

1990 Gay Index  
4.00 

(0.116) 
5.19 

(0.046) 
1.63 

(0.622) 
5.49 

(0.037) 

1990 State R&D / 100,000 population  
-0.00025 

(.701) 
-0.00005 
(0.939) 

-.00077 
(0.359) 

0.00019 
(0.764) 

1990 Patents / 100,000 population  
1.27 

(0.000) 
1.32 

(0.000)  
1.39 

(0.000) 

Constant 
6.41 

(0.520) 
5.616 
(.520) 

-15.53 
(0.024) 

8.26 
(0.468) 

-7.09 
(0.238) 

Adjusted R-Squared 0.2614 0.5694 0.5454 0.2669 0.535 

N 240 240 240 240 240 
p-value in parentheses 
 
* To recover the marginal effects of both the Composite Density Index and 1990 Percent Super-
Creative Employment, we compute the respective coefficients with all other variables at their means 
(from column (2)).  When this is done, we observe: 
 

i) (1999 Patents / 100,000 population) = 22.3 + 30.96 (Composite Density Index) 
ii) (1999 Patents / 100,000 population) = 5.6 + 222.9 (1990 Percent Super Creative 

Employment) 
 
Clearly, the coefficients on Density and Creativity are both positive, as theory would predict.   
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Table 6: OLS Regression with Patents, controlling for population 

Dependent Variable:   
1999 Patents / 100,000 population (1) (2) 

Independent Variables:   

Composite Density Index* 
-440.08 
(0.000) 

-296.51 
(0.000) 

1990 % Super-Creative Employment* 
-87.37 
(0.475) 

-216.23 
(0.037) 

Creativity - Density Interaction Term 
6636.42 
(0.000) 

4344.53 
(0.000) 

(Creativity – Density) * 1990 population 
-0.0002 
(0.000) 

-0.0002 
(0.001) 

1990 Bohemian Index  
5.38 

(0.366) 

1990 Percent Scientist & Engineers  
1.19 

(0.993) 

1990 Gay Index  
1.63 

(0.527) 

1990 State R&D / 100,000 population  
-0.0004 
(0.534) 

1990 Patents / 100,000 population  
1.18 

(0.000) 

Constant 
19.81 

(0.049) 
12.81 

(0.145) 

Adjusted R-Squared 0.3177 0.5892 

N 240 240 
p-value in parentheses 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


